# **Science Driver: Bio-Transport Computations**

**Computing of Transport Processes in Biological Systems** 

S. Acharya<sup>1,2</sup> (Lead), D.Moldovan<sup>1</sup>, R. Devireddy<sup>1</sup>, D. Nikitopoulos<sup>1</sup>, A. Gilmanov<sup>1,2</sup> Louisiana State University <sup>1</sup>Mechanical Engineering Department <sup>2</sup>Center for Computation and Technology

Graduate Students: R. Alapati, P. Kalghatgi, T. Gilmanov

ort from the NSF EPSCoR Program & the LA-BOR is gratefully acknowle



# Prediction and understanding of oxygen transport in piological systems

- Continuum flow in larger vessels-Navier Stokes
- Porous media transport across vessel walls & tissues-Brinkmann
- Structural deformation of vessels/tissues-
- Particle flow in capillaries-Lattice-Boltzmann
- Atomistic transport across cellular interfaces-Molecular Dynamics
- 6. Upscaling from atomistic to continuum



# vevelopment of computationally efficient numerical methods or algorithms needed for biological transport calculations Structural calculation using a meshless particle method Flow-Structure Interaction (FSI) methodology using Immersed boundary Method (IBM) contributing to improved science-understanding of small molecule low/transport physics under asymmetric concentrations and applied stresses Asymmetric calculations of molecule/particle transport across lipid bilayers contributing to improved computational infrastructure-collaborating with the cybertools group responsible for developing the CFD toolkit Development of cactus-compatible routines for transport and flow calculations

Yea

Validation Studies

Contributing to improved science-understanding of oxygen flow/ transport physics under elevated pressures

#### ontinuum flow and transport calculations

- Multiblock structured grid with continuous grid lines across block interfaces
- Fractional step algorithm with staggered grid locations for the velocity (stored at cell faces)
- Pressure-poisson equation for pressure
- Consistent second order differencing for diffusion and pressure terms and upwind biased differencing for the Background grid for soluti convective terms
- Explicit and implicit second order temporal differencing
- Flow-structure interaction
- Particle-based meshless calculations for structural deformations (called material point method-MPM)
- Immersed Boundary Methodology (IBM) for resolving boundary conditions along moving interfacial surfaces
- Flow-Structure Interaction for Biosystems



momentum equations



# Material-Point Method (MPM) for structural deformations

- \* Arbitrary distribution of points on the solid body/surface
- Material points are solved (deformation & stress) on a background grid that is independent from the fluid grid
- Flow-structure coupling through boundary/interface conditions
- Flow around deforming surface handled through IBM

[Time = 1.0])

14. Dropping a sphere Re=50









- Collaborating with the WP4 group for the development of a CFD Toolkit;
- Finite volume, multi block;
- Data array structure consistent with current structure in Cactus;
- Multi-block grid from commercial grid generators;
- Baseline code developed for laminar flow; several benchmarks being run to provide WP4 input-output files for Toolkit verification and validation;
- Long term plans are to transition to the Toolkit for the biosystems transport simulation;

 Implemented suggestions for improved performance of paralle code—seen improvements

 Discussions ongoing with Viz groups to get better access to better visualization codes (WP3)

 Discussions ongoing on use of a Lattice Boltzmann code for particle simulations

 Discussions ongoing on most effective ways of doing CFD-MD coupling sion rate and permeability coefficients across I walls and tissues for different conditions are ally not known reliably (difficulty in in situ urements)

- cifically designed MD simulations under ent conditions can provide:
- tomistic insight and molecular mechanism derlying the transport of  $O_2$  across a lipid ayer membrane in order to determine which stails are important for the permeation process.
- erive the oxygen diffusivities, D<sub>O2</sub>, inside the nomogeneous region of a lipid bilayer.

erive permeation rates,  $P_{O2}$ , indirectly via mputation of the free energy and diffusion rate of a  $O_2$  molecule across the lipid bilayer.





# **Structural changes in Lipid Bilayers**



No penetration of water molecules
Data analyzed for mass density profiles, radial distribution functions, tail order parameters, and water orientation profile

# ass density profiles of : DMPC, DMSO, and wa



Ons profiles: dotted line ,50ns profiles: solid line

## CFD

- ✓ Improvements to the IBM (pressure interpolation)
- ✓ Working on the MPM for greater robustness (implicit, parallel)
- ✓ Simulation of transport in flexible tubes

#### MD

✓ Simulation of small molecules across lipid bi-layers

### Collaboration with WP4

- ✓ Regular meetings with the WP4 team
- ✓ Development of a simplified CFD code with data array structure consistent with Cactus for implementation as part of the CFD Toolkit

# CFD-MD Coupling

 $\checkmark$  Discussion on coupling strategy and approaches





### Development of improved CFD methodologies for biological systems (complex metries, moving boundaries, multi-scale phenomena)

Itilization of CFD and MD methodologies for improved understanding of trans cesses in biological systems

Supporting the development of Toolkit infrastructure for open source, scalable community usage

FD-MD integration for resolving/integrating atomistic effects

uture interactions will also include the visualization groups and the portals gro